×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2301.00326v2 Announce Type: replace
Abstract: This study examines the convexification version of the backward differential flow algorithm for the global minimization of polynomials, introduced by O. Arikan \textit{et al} in \cite{ABK}. It investigates why this approach might fail with high-degree polynomials yet succeeds with quartic polynomials. We employ the heat evolution method for convexification combined with Gaussian filtering, which acts as a cumulative form of Steklov's regularization. In this context, we apply the fingerprint theory from computer vision. Originally developed by A.L. Yuille and T. Poggio in the 1980s for computer vision, the fingerprint theory, particularly the fingerprint trajectory equation, is used to illustrate the scaling (temporal) evolution of minimizers. In the case of general polynomials, our research has led to the creation of the Yuille-Poggio flow and a broader interpretation of the fingerprint concepts, in particular we establish the condition both sufficient and necessary for the convexified backward differential flow algorithms to successfully achieve global minimization. For quartic polynomials, our analysis not only reflects the results of O. Arikan et al. \cite{ABK} but also presents a significantly simpler version of Newton's method that can always globally minimize quartic polynomials without convexification.

Click here to read this post out
ID: 842914; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: