×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2307.06700v2 Announce Type: replace
Abstract: Given a digraph $D=(V,A)$ on $n$ vertices and a vertex $v\in V$, the cycle-degree of $v$ is the minimum size of a set $S \subseteq V(D) \setminus \{v\}$ intersecting every directed cycle of $D$ containing $v$. From this definition of cycle-degree, we define the $c$-degeneracy (or cycle-degeneracy) of $D$, which we denote by $\delta^*_c(D)$. It appears to be a nice generalisation of the undirected degeneracy. In this work, using this new definition of cycle-degeneracy, we extend several evidences for Cereceda's conjecture to digraphs. The $k$-dicolouring graph of $D$, denoted by $\mathcal{D}_k(D)$, is the undirected graph whose vertices are the $k$-dicolourings of $D$ and in which two $k$-dicolourings are adjacent if they differ on the colour of exactly one vertex.
We show that $\mathcal{D}_k(D)$ has diameter at most $O_{\delta^*_c(D)}(n^{\delta^*_c(D) + 1})$ (respectively $O(n^2)$ and $(\delta^*_c(D)+1)n$) when $k$ is at least $\delta^*_c(D)+2$ (respectively $\frac{3}{2}(\delta^*_c(D)+1)$ and $2(\delta^*_c(D)+1)$). This improves known results on digraph redicolouring (Bousquet et al.).
Next, we extend a result due to Feghali to digraphs, showing that $\mathcal{D}_{d+1}(D)$ has diameter at most $O_{d,\epsilon}(n(\log n)^{d-1})$ when $D$ has maximum average cycle-degree at most $d-\epsilon$. We then show that two proofs of Bonamy and Bousquet for undirected graphs can be extended to digraphs. The first one uses the digrundy number of a digraph and the second one uses the $\mathscr{D}$-width.
Finally, we give a general theorem which makes a connection between the recolourability of a digraph $D$ and the recolourability of its underlying graph $UG(D)$. This result directly extends a number of results on planar graph recolouring to planar digraph redicolouring.

Click here to read this post out
ID: 842930; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 5
CC:
No creative common's license
Comments: