×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2311.12324v2 Announce Type: replace-cross
Abstract: Diatomic molecular codes [arXiv:1911.00099] are designed to encode quantum information in the orientation of a diatomic molecule, allowing error correction from small torques and changes in angular momentum. Here, we directly study noise native to atomic and molecular platforms -- spontaneous emission, stray electromagnetic fields, and Raman scattering -- and show that diatomic molecular codes fail against this noise. We derive simple necessary and sufficient conditions for codes to protect against such noise. We also identify existing and develop new absorption-emission (\AE) codes that are more practical than molecular codes, require lower average momentum, can directly protect against photonic processes up to arbitrary order, and are applicable to a broader set of atomic and molecular systems.

Click here to read this post out
ID: 859011; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 17, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: